Общая группа сравнимых систем переменного состава свойств
Общая группа сравнимых систем переменного состава свойств

2. Общая группа сравнимых систем переменного состава свойств

В группе постоянного состава свойств
Системы отличаются количественными мерами.
В переменной группе имеются качественные отличия.
Всякая система содержит определенное количество интересующих нас свойств, поэтому она имеет размерность.
Определенное количество свойств имеет группа.
В постоянной группе размерность у всех систем одинакова и равняется числу всех групповых свойств.
В переменной группе размерность у систем непостоянная и не превышает количества групповых свойств.

Так как системы мы объединяем в одну группу, то они все, без исключений, имеют общие свойства.
Общие свойства в каждой системе образуют постоянный уровень, имеющий постоянную размерность.
Постоянный уровень в разных системах отличается только количественными проявлениями.
Системы могут иметь постоянную размерность, но все же входить в переменную группу за счет переходного уровня.
Переходный уровень состоит из одного и более семейств.
Каждое семейство состоит из качественно разных переходных свойств.
Одна система не может одновременно иметь два переходных свойства одного семейства: она может иметь одно и более переходных свойств, но равных семейств.
Если система не имеет какое-то переходное свойство данного семейства, то она имеет другое свойство этого же семейства.
Если вещество не жидкое, то оно твердое или газообразное.
В разных системах одной группы переходный уровень имеет постоянную размерность.
Разную размерность обусловливает слагаемый уровень.
Существуют две системы: в одной есть слагаемое свойство, а в другой его нет, и ничем оно не заменяется.

В переменной группе имеет место качественная ассоциация, когда наличие в системе одного свойства
Обусловливает наличие другого свойства.
Два свойства, находящихся в отношении двухсторонней ассоциации всегда вместе присутствуют в системах.
Одно свойство по причине односторонней ассоциации обусловливает второе свойство, но второе может иметь место в системах и без первого.
Общие свойства всегда имеют двухстороннюю качественную ассоциацию.

Между свойствами могут быть отношения отрицания.
В отношении отрицания находятся переходные свойства, когда наличие одного свойства исключает наличие другого.

Теперь, наша задача - наиболее рационально классифицировать системы группы.
Мы должны понять какую-то таблицу, размещающую в себе все системы переменной группы, и правила пользования ею,
Чтобы впоследствии могли быстро и уверенно описать свойства у любой системы, не занимаясь излишним наблюдением и измерением.

Наиболее удобная для классификации систем является, на мой взгляд, схема логического дерева.
Логическое дерево состоит из кружочков и разветвлений.
Каждый кружочек означает какое-то понятие.
Понятие имеет объем и содержание.
Объем - это количество систем, входящих в понятие.
Содержание - все общие свойства этих систем.
Понятие также имеет определение, при помощи которого образуется объем понятия.
Если для системы не ложно определение, то она входит в объем понятия, а следовательно - ей присущи и содержание понятия.
Определение базируется на каком-то свойстве, если система имеет это свойство, то ей присущи все свойства содержания понятия.

Из каждого понятия по веткам отходят другие понятия,
Полный объем которых равняется объему первого понятия.
Т.е. каждое понятие разбивается на подмножества.
Понятия исключают друг друга,если не имеют общих систем.
Пересекаются (имеют общие системы) только те понятия, которые исходят из одного понятия.
Если два понятия исключают друг друга, то
Дальнейшие их разветвления никогда не пересекутся.
Логическое дерево разбито на классы.
Начальный первый класс состоит из одного понятия,
Объем которого включает в себя все системы группы.
Следующий класс уже состоит из двух и более понятий.
Конечный класс состоит из конкретных систем.
Объемы любых двух классов равны, всякую систему группы можно разместить в любом классе.
Если у какого-то понятия найдем ветвь, соединяющую его с начальным понятием, то содержания всех понятий, находящихся на этой ветви, войдут в содержание данного понятия.
Чем дальше класс от начального класса, тем больше содержание понятий и тем меньше их объем.
Интересуемую нас систему мы сначала размещаем в первый класс - получаем начальное знание о ней.
Исследуем ее, находим новые примечательные свойства, в силу которых переводим систему во второй класс, где уже из теоретических соображений
Наделяем ее новыми свойствами.
Так продвигаем изучаемую систему до конечного класса,
В котором мы получим максимально возможное знание о ней.
Конечно, нельзя получить полное знание: ведь логическое дерево составляется людьми, а людям свойственно ошибаться.

Попробуем образовать логическое дерево для нашей переменной группы.
В содержание первоначального понятия войдут все общие свойства систем группы, а также все произвольные не исключающие друг друга слагаемые свойства, которые могут присутствовать во всякой системе группы.
Если отсутствуют семейства и все слагаемые свойства произвольны, то логическое, дерево невозможно построить.
Группа, не имеющая логического дерева, произвольна, она состоит из одного понятия, и любой вероятной системе соответствует реальная система.
Логическое дерево выполняет роль запрета: если вероятную систему невозможно провести из начального класса в конечный, то она не реальна; если вероятная система располагается в двух исключающихся понятиях одного класса, то она также не существует.
Логическое дерево накладывает запрет на некоторые вероятные системы, поэтому их количество превышает количества реальных систем и группа является закономерной.

Исследуя реальные системы, мы находим противоречия и ассоциации.
Обратимая ассоциация - множество свойств, которые присутствуют всегда вместе в отдельных системах.
Односторонняя ассоциация имеет направление, от наличия одного свойства в системе зависит наличие всех остальных последующих свойств.
Так как семейство присутствует во всех системах, то второй класс начинаем строить именно с него.
Сколько свойств в семействе столько будет исключающих друг друга понятий в классе.
Каждое свойство семейства определит какое-то подмножество систем группы, объем подмножеств равняется объему всего множества систем.
Обращаемся к исследованным ассоциациям.
Если данному свойству семейству присуще какое другое переменное свойства, то это переменное свойство необходимо войдет в содержание понятия этого свойства.
Третий класс строим при помощи другого семейства.

К каждому понятие второго класса приставляем множество свойств третьего класса семейства, при этом учитываем противоречия между свойствами этих семейств: если два свойства разных семейств противоречат, исключаются, то они не образуют понятие.
Третий класс также сохранит объем первоначального понятия.
Наделяем содержанием понятия третьего класса.
Если свойства вошли в содержание предыдущего класса, то они в последующем не образуют класс.
Пересечения между понятиями возможны,когда раскладывается слагаемый уровень по тем свойствам, которые могут присутствовать вместе в системах, а могут и по отдельности присутствовать в других системах.
Два слагаемых свойства образуют два понятия в одном классе, этими свойствами наделено одно понятие предыдущего класса, причем предыдущему понятию эти свойства по отдельности и вместе, поэтому понятия двух слагаемых свойств пересекаются. Количественные проявления понятий предпоследнего класса будут образовывать конкретные система конечного класса.
Логическое дерево рационально,если понятия в нем более содержательны и наименьшее количество классов.

В содержании каждого понятия дерева определенное количество свойств, которые необходимо присущи всем системам выделенного подмножества.
Каждое понятие образует абстрактную группу систем постоянного состава свойств, поэтому в каждом понятии мы исследуем количественные ассоциации как в постоянной группе.

Новости клуба

  • Андрей Булатов
    2025-01-02 11:42:57
    Карма и фатум
    Карма и фатум

    Человека окружают явления, сам он явление. У явлений можем наблюдать параметры пространства и времени, у самого явления параметры. Между явлениями существуют причинно-следственные связи.

    Из явлений с причинно-следственными связями и с общими параметрами пространства и времени образуются предметы.

    ...

    Подробнее: Основы гормональной психологии

  • Андрей Булатов
    2025-01-02 11:42:57
    Нейронный модуль
    Нейронный модуль

    Нервная система управляет организмом и окружающим миром - нейроны имеют власть над миром, а каждая власть, в том числе и нейронная состоит из органов.

    Нейронный модуль - это местный или центральный орган власти нервной системы, ответственный за определенную функцию в управлении.

    Подробнее: Модули нервной системы

  • Андрей Булатов
    2025-01-02 11:42:57
    Органы психики
    Органы психики

    Как мы определились в предыдущих теориях гормональной психологии, психика есть реализация мыслительных свойств ДНК при жизни организма. Но для каждой эффективной реализации любого явления нужны органы управления и власти.

    Подробнее: Органы управления и власти психики человека

  • Андрей Булатов
    2024-12-22 10:54:14
    Отличие влюбленности от любви
    Отличие влюбленности от любви

    Люди часто путают влюбленность от любви по той единственной причине, что не знают любви, никогда в жизни не испытывали божественного состояния психики.

    А у влюбленности и любви ведь крайне противоположное отличие. Этим противоположностям хоть и не присущи ненависть и отвращение, но они все же не стоят в

    ...

    Подробнее: Отличие влюбленности от любви

  • Андрей Булатов
    2024-11-16 08:57:21
    Любопытство животных
    Любопытство животных

    Любопытным Варварам на базаре нос отрывают. Журналистов не любят, если они вместо любознательности проявляют любопытство.

    Любопытство появилось у животных, без которого они не найдут пищу и останутся голодными. Любознательность - уже черта человека разумного.

    Подробнее: Любопытство и любознательность как порок и благо