Образование нефти

Больше
10 года 1 мес. назад #6769 от Геннадий Тарасенко
Автор предлагает геохимическую классификацию, определяющую не только их происхождение, но и соотношения, которая включает различные эффекты: 1) генетические, 2) миграционные; 3) взаимодействия.

Генетические эффекты. Образование изотопа 4Н связано с естественным радиоактивным распадом 238U, 235U и 232Th. Периоды полураспада соответственно равны 1,5369·10/год, 9,72·10/год и 4,88·10/год. В среднем в коре и мантии гелия (Не) образуется (3 – 4) 10 мі/год. Содержание радиоактивных элементов в породах различно, что приводит к разным скоростям и количествам образования Не. Свинец, так часто наблюдаемый в глубоких флюидах и практически во всех месторождениях УВ, является конечным продуктом распада не только урана (РЬ) и тория (РЬ), но и актиния (РЬ). Скорости генерации гелия в различных породах различны (в смі/г/год):

• кислые изверженные породы – 10,

• изверженные ультраосновные – (2 – 3) 10,

• черные сланцы – б 10,

• глины – 2 10

• карбонаты – б 10.

Из приведенных выше скоростей генерации Не следует, что количество образовавшегося изотопа при прочих равных условиях зависит от генезиса пород, их объема, состава и соотношений в геологических разрезах конкретных территорий.

Образование іНе связано с наведенным (индуцированным) радиоактивным распадом лития. Эти процессы связаны с бомбардировкой ядер лития тепловыми нейтронами при естественном радиоактивном распаде. В этом процессе 4Не образуется несоизмеримо меньше. Вместе с тем соотношение 3Не/4Не должно быть вполне определенным, отражающим процессы естественного и наведенного радиоактивного распада (нейтроны космического происхождения не могут проникнуть на сколь-нибудь значимую глубину) и определяется следующим соотношением (там же, с.32):

3Не/4Не = Ψ(άn) РthfLi, где Ψ(άn) – выход нейтронов на одну ά-частицу, Рth– вероятность достижения нейтронами тепловых скоростей, необходимых для бомбардировки ядер лития, fLi – доля нейтронов, захваченных ядрами лития. Значение 3Не/4Не должно составлять в обычных гранитных породах – 10, т.е. это отношение существенно зависит от состава пород, и прежде всего от содержания в них лития, продолжительности радиоактивных процессов (т.е. от возраста пород) и вероятности достижения нейтронами тепловых скоростей, необходимых для образования іНе.

Перераспределение изотопов – "вызывается неравноценностью изотопов одного и того же элемента в химических реакциях и физических процессах" (там же, с.34). Перераспределение изотопов между реагентами осуществляется в соответствии с энергетической выгодностью. "Изотопные соотношения… если и не сохраняются в течение их жизни, … являются … отправной точкой, от кoтopoй отсчитываются все nоследующие изменения." (там же, с.34).

Автор вводит понятие коэффициента разделения для оценки фракционирования изотопов. Разделение изотопов определяется обменными процессами при образовании веществ. Кинетический эффект разделения изотопов проявляется в открытых (незамкнутых) системах, в необратимых реакциях (все реакции в геологических процессах необратимы) и "обусловлен скоростью реакций разных изотопных форм. Фракционирование изотопов в ходе однонаправленных реакций заключается в предпочтительном накоплении легкого изотопа в продуктах реакции" (там же, с.38). Коэффициент фракционирования определяется через соотношение скоростей реакций изотопных форм. Кинематический эффект, так же как и термодинамический, зависит от температуры и с ее ростом уменьшается.

При больших массах веществ коэффициент разделения изотопов определяется из следующего соотношения. Здесь μ = m – приведенные массы молекул. Поскольку μ*, всегда больше μ, то а всегда больше единицы. Точные расчеты а в большинстве случаев оценить или затруднительно, или невозможно.

В однонаправленных реакциях изотопно-легкий продукт в начале реакции довольно быстро становится тяжелее исходного вещества, из чего следует, что при постоянном удалении изотопно-тяжелых порций изотопно-легкого продукта будет больше относительно исходного. При этом количество продукта в каждой последующей порции будет меньше.

Многие соотношения изотопов сильно изменяются во времени, что связано с содержанием радиоактивных и некоторых стабильных элементов. "Поэтому нельзя исключить, что разным типам пород будут свойственны свои изотопные соотношения" (там же, с.40), которые зависят от вещественного состава и возраста пород (что очень важно), но и от других причин.

Миграционные эффекты. К миграционным эффектам относятся: диффузия, растворение в жидких и твердых средах, их дегазация, сорбция и десорбция, испарение и конденсация и др. Все это многообразие процессов и их сочетаний в различных термодинамических условиях определяет сложность прогноза в соотношении изотопов. "Появление газов в термодинамической обстановке, отличной от той, в которой формировался их изотопный облик, смешение газов генетически чуждых генераций могут приводить к кажущимся "миграционным" изотопным эффектам" (там же, с.47).

Эффекты взаимодействия. Смешение и изотопный обмен различающихся изотопных форм различного генезиса способны приводить к вариациям изотопного состава. Эти процессы имеют широкое распространение из-за высокой подвижности природных газов.

"Инертные газы мантии также должны составлять смесь первичных и радиогенных газов, соотношение между которыми изменяется во времени из-за радиоактивных процессов и дегазации мантии" (там же, с.47). В осадочной толще тоже идет активное образование газов и их миграция в вертикальном направлении к поверхности Земли. Диагностика смешанных газов чрезвычайно сложна. Следует исходить из того, что в любой момент прошлого и в настоящее время содержание изотопов и их отношения не равновесны и меняются во времени с изменением термодинамических условий.

На неоднозначность заключений о генезисе УВ, получаемых на основании изучения соотношения изотопов, указывает Э.М. Прасолов в приведенной выше работе, а также последующих [15, 16].

Широкий диапазон изменения изотопного состава углерода установлен для карбонатов подводных грязевых вулканов Черного моря. Здесь значения δС меняются от -43,3 до -10,5%о, авторы (включая Э.М. Прасолова [15]) не могут однозначно интерпретировать этот факт и приводят "временное" его объяснение. Аналогичная ситуация складывается для природных карбонатных труб в районах подводной разгрузки флюидов в Кадисском заливе Атлантического океана [16]. И здесь так же объяснение носит предположительный характер.

М.В. Родкина в своей работе [17] оспаривает вывод Э.М. Прасолова о пренебрежимо малом вкладе мантийных газов по данным изучения изотопного состава углерода и гелия и выделяет два вида погрешностей.

Первая погрешность связана с выбором характерных значений соотношений (погрешность, как в сторону завышения, так и в сторону занижения).

Обычно используется отношение СН/іНе10, характерное для высокотемпературных фумарольных и вулканических газов, и даже "для наиболее обогащенных мантийной компонентой месторождений Тихоокеанского кольца получаем величину вклада мантийных УВ не более 0,1 – 0,5%" [17, с.131]. В низкотемпературных зонах (амагматические области) ситуация иная.

Так, в тыловом бассейне Окинава характерная величина отношения СН/іНе близка к 10 и, как правило, меньше значения отношения іНе/He, характерен также более легкий состав углерода. Кроме того, по геологическим данным нет оснований полагать обогащение этих газов газовыми компонентами осадочных пород. С удалением от вулканической области отношение іНе/He уменьшается. Одновременно уменьшаются концентрации и утяжеляется изотопный состав СО,растет относительная концентрация Н и СН4. Аналогичная ситуация наблюдается в Калифорнии, где отношение концентраций СН/іНе еще выше и составляет около 1010, а также наблюдается повышенное соотношение изотопов гелия. В этом районе несомненно обогащение метаном осадочных пород.

Вторая погрешность связана "с неучетом потока субдуцированного вещества, предположительно поступающего из зон субдукции в мантию тыловых областей" [72, с.132]. Эти потоки могут быть двойного генезиса: мантийного и биогенного, что неизбежно приводит к занижению мантийной составляющей.

В континентальной коре по данным петрологических исследований эпизодически (квазипериодически) возникает восстановление флюида из зон субдукции, что приводит к формированию флюидного режима. Это подтверждается результатами моделирования этого процесса и данными сейсмотомографии. Вместе с тем имеются доказательства существенного вклада мантийных газов в формирование месторождений УВ: во-первых – изотопия сопутствующих компонентов (Nd, Pb, Sr) в большинстве месторождений бывшего СССР и Китая подтверждает их коровое или мантийное происхождение; во-вторых – высокие значения іНе/He свидетельствуют об их мантийном генезисе. Для месторождений, приуроченных к активным границам плит, это соотношение повышено. Тем не менее, это повышение незначительно, что интерпретируется не в пользу участия мантийных флюидов в формировании месторождений УВ.

По утверждению М.В. Родкиной, интерес представляет не только средняя величина этого соотношения, но и характер вариаций изотопов для близко расположенных месторождений. На примере месторождений Калифорнии, Западной Сибири и района Green Tuff(Япония) показано, что при значительном разбросе точек для каждого района наблюдается высокая корреляция (выше 99%) величин отношения іНе/He и изотопного состава УВ. Кроме того, эмпирические прямые для отношений lg(іНе/He)/13С для всех районов субпараллельны. Рост іНе/He приводит к утяжелению изотопного состава метана (до 20 – 30%), что соответствует увеличению вклада мантийной составляющей. Представленная на рисунках в работе [17] закономерность изменения отношения lg(іНе/He)/13С , по мнению автора, не является универсальной. Например, она не выполняется для центральных частей Америки, широтного Приобья. Приведённые данные свидетельствуют о значительном обогащении континентальных окраин рециклированным флюидом и стирании мантийных изотопных меток со временем вверх по разрезу.

В качестве аргументов в пользу неорганического происхождения УВ в работе В.А. Краюшкина [18] приводится информация о содержании δ13С в различных природных объектах (табл. 3).

Таблица 3

Содержание б13С в природных объектах
Объект

Содержании б13С, ‰
Природные нефти От -20 до -30
Попутный нефтяной газ От 30 до -55
Природный газ От 20 до -62
Метан от ферментативного брожения в желудке животных От 62
Морские метаногидраты От 36,1 до 94
Фишер–Тропшевая нефть От 14 до -65
Графит хондроидов -20
Кероген углистых метеоритов От 17 до -27
Некарбонатный углерод ультрамафитов и первичных флюидных включений мантийных перидотитовых ксенолитов От 22 до -29
Природные алмазы От 0,5 до -33
Современная морская биота тропиков и умеренных широт От 8 до -34

Различное содержание изотопов углерода свидетельствуют о "неодинаковом нефтенасыщении коры и мантии по площади, разрезу и наличии там гигантских одинарных или кластерных очагов естественного небиотического синтеза нефти и природного газа" [18].

Биогенным признаком происхождение нефти считается изотопный состав углерода с δ13С -25 – -28%о. Ранее содержание этого изотопа мантийного происхождения (в частности в алмазах) считалось значительно выше – δ13С -2 – -7,2%o. Однако в настоящее время обнаружены алмазы с δ13С -33%о и меньше, т.е. диапазон мантийного углерода значительно расширился, в связи с чем однозначность биогенного происхождения углерода в нефтяных и газовых месторождениях вызывает определённые сомнения. Образование месторождений УВ, несомненно, сопровождаемое процессами их преобразования, миграции и массобмена приводит к изменению изотопного состава углерода, который изначально может быть продуктом как биогенного, так и абиогенного происхождения [19]. В этой работе также показано, что при окислительном гидратодиспропорционировании полиуглеродных веществ из-за различия скоростей элементарных процессов разрыва связей в системе различных сочетаний 12С– 13С,12С – Н, 13С – Н и образования СО2, содержащего преимущественно 13С, формируются УВ-молекулы, обогащенные легким изотопом углерода.

По данным М.И. Кучера [20], содержание и изменение изотопа 13С зависит от новейшей тектономагматической активности (в том числе измеренной инструментальными методами), когда отдельным участкам соответствует более облегченный состав углерода (до -20 – -21‰), а его утяжеление (до -8 – -10‰) наблюдается на участках со снижением относительной активности. В первом случае работает более глубинный очаг магматической активности, во втором – приповерхностный, на стадии затухания магматической активности.

По мнению В.А. Кривошея "ведущим процессом образования всего спектра УВ-соединений нефти и газа является высокотемпературный минеральный синтез, обеспечивающий термодинамически равномерное распределение изотопов углерода во всех компонентах УВ-систем. Глубинные источники выступают как генераторы волновой направленной эволюции процессов синтеза УВ" [21]. Исследованиями изотопного состава углерода в газово-жидких включениях (газ, нефть, битумоиды) установлено не известное ранее явление квантового распределения изотопного сдвига δ13С. Поступление глубинного УВ-вещества является импульсным. Особенности его фазового состояния, широкий спектр физико-химических показателей и свойств отражает несколько циклов миграции во времени. Это также находит подтверждение в работах [1, 22, 23].

Как уже отмечалось, одним из аргументов в пользу органической теории происхождения нефти и формирования месторождений УВ является соотношение изотопов гелия 3Не/4Не для различных геологических сред (см. табл. 2). Главным при этом является отличие изотопного состава мантийного и осадочного гелия (порой на три порядка). Это утверждение опровергается результатами исследований этого соотношения в пределах Кольского п-ова, где в интрузивных ультраосновных породах соотношение 3Не/4Не меняется в очень широких пределах (от 1 – 2.10-8 до 3,3 10-5) [24].

В магматических породах столь высокие значения этого соотношения ранее обнаружены не были. Авторы справедливо утверждают, что в настоящее время отсутствуют однозначные метки, свидетельствующие о том или ином генезисе изотопов гелия, так как современный состав изотопов является продуктом многих процессов: степень дегазации расплавов, содержание радиоактивных минералов и длительность их распада, концентрация мигрирующих изотопов и их потери, сохранность изотопов, длительность и интенсивность постмагматических процессов и многое другое.

Это подтверждается результатами изучения изотопов углерода на севере Западной Сибири [25, 26]. Особое внимание при этом отводилось поиску причин, приводящих к изменению δ13С свободных газов по площади и разрезу. На гигантской Надымско-Медвежьей газовой залежи с севера на юг величина δ13С возрастает соответственно с -52,9‰ до -40,8‰, а в пределах Уренгойской залежи вниз по разрезу δ13С меняется с -43,6 – -44,8‰ (глубина 1104 – 1150 м) до 42,6‰ (глубина 30 м). По разрезу газовых месторождений Ямальской нефтегазоносной области (НГО) δ13С (в ‰) меняется следующим образом в отложениях различного возраста: валанжина – -32,4; апта – -40; альба – -39,2; сеномана – -47,6; в верхней части разреза (глубина 15 – 150 м) в многолетнемерзлых порода (K2m–b–Q) эта величина составляет -70,4 – -76,8. На основе этого выделено два типа разреза: в первом наблюдается закономерное утяжеление изотопов углерода – миграционный генетический тип; во втором – относительно постоянное содержаниее δ13С – сингенетический тип. Первый тип разреза устанавливается на многих газовых месторождениях и других регионов.

Таким образом, существующих в настоящее время данных явно недостаточно для однозначного решения вопроса о далях изотопов различных газов разного генезиса, и по этой причине преждевременно говорить о торжестве осадочно-миграционной теории происхождения нефти и формирования месторождений УВ на основе соотношенияизпотопов газов.

ЗАКЛЮЧЕНИЕ

1. Количественными расчетами и моделированием доказано, что ни нфильтрационное, ни элизионное питание не могут формировать региональных потоков флюидов в латеральном направлении. Этому направлению движения препятствует также пластово-блоковое строение нефтегазоносных комплексов. Это значит, что перенос рассеянных УВ и микронефти по напластованию пород невозможен и как следствие невозможно формирование сколько-нибудь значимых скоплений УВ за счет латеральной миграции.

2. Осадочно-миграционная гипотеза происхождения нефти постепенно сдает свои позиции, что проявляется: а) в расширении границ плавной фазы нефтегазообразования с глубин 1800 – 2000 м до нескольких километров и температур с 90 – 120˚С до нескольких сот градусов; б) в дополнении этой гипотезы флюидодинамической концепцией, т.е. признании гидротермальной деятельности, что неизбежно приведет к признанию определенной роли мантийных УВ, которые уже признаются, но пока им отводится незначительная роль (Б.А. Соколов); в) в признании того факта, что не все осадочные породы являются нефтематеринскими. Так, например, результаты геохимических исследований ОВ показали, что по УВ-биомаркерам ОВ абалакской свиты и нижневасюганской подсвиты не являются источником нефтей в горизонтах Ю1, Ю2, и пластах группы "Б" и "А" нижнемеловых отложений – ненефтематеринских свитах, несмотря на их нефтематеринский потенциал [13, 14 и др.].

3. Существующих в настоящее время данных о соотношениях изотопов различных газов явно недостаточно для однозначного решения вопроса о генезисе УВ. Спектр их соотношений для различных геологических сред постоянно расширяется.

4. Расширение спектра исходных веществ, химических элементов и катализаторов, термодинамических условий позволяет получать все больше синтезированных УВ, приближающихся по своему составу и свойствам к природным.

5. Таким образом, основные доказательства осадочно-миграционной гипотезы формирования нефти и образования месторождений УВ постепенно расшатываются в связи с новыми данными, получаемыми в различных областях, и все больше подтверждений появляется в доказательство минеральной или смешанной гипотез формирования УВ.

6. Для решения многих спорных вопросов и вообще проблемы образования нефти и формирования месторождений УВ совершенно необходима организация мониторинга на эксплуатируемых месторождениях. Целью такого мониторинга должно быть создание временных рядов, включая наблюдения за физическими и геохимическими свойствами нефти в процессе эксплуатации, геодинамические, гидродинамические, палинологические и другие виды наблюдений.

7. На настоящий момент нет ответа на следующий вопрос: почему в " одинаковых термодинамических условиях одни осадочные отложения, являются нефтематеринскими, а другие нет?

8. Наблюдаемая в настоящее время восполняемость эксплуатационных запасов на месторождениях, различие геохимических свойств нефти в пределах одного месторождения свидетельствуют не в пользу осадочно-миграционной гипотезы происхождения нефти и требуют своего объяснения.

Список литературы

1. Дюнин В.И. Гидрогеодинамика глубоких горизонтов нефтегазоносных бассейнов. М.: Научный мир, 2000. 471 с

2. Пиковский Ю.И. Концепция нефтегазообразования: практические следствия как критерий оценки // Мат-лы Шестой межд. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн. 2. М.: ГЕОС, 2002. С. 82-85.

3. Баженова О.К., Соколов ЕА. Происхождение нефти – фундаментальная проблема естествознания // Тезисы докл. межд. конф. "Генезис нефти и газа и формирование их месторождений в Украине как научная основа прогноза и поисков новых скоплений". Чернигов. 2001. С. 10-12

4. Карцев А.А., Лопатин НВ, Соколов БА., Чахмахчев В.А. Торжество органической (осадочно-миграционной) теории нефтеобразования к концу ХХ в. // Геология нефти и газа. 2001. #3. С. 2-5

5. Дюнин В.И., Корзун А.В., Кирюхина ТА. Гидродинамика глубоких горизонтов и нефтегазоносность (на примере северной части Печорской впадины) // Тезисы ХIII геологического съезда Республики КОМИ "Геология и минеральные ресурсы Европейского Северо-востока России". Сыктывкар. 1999.

6. Соколов БА. Новые идеи в геологии нефти и газа. М.: МГУ, 2001. 480 с.

7. Соколов ЕА., Конюхов А.И. Иңекционная геология осадочных бассейнов и нефтегазоносность // Тезисы докл. ежегодной научной конф. "Ломоносовские чтения". М.: МГУ, 1995. С. 44

8. Коробков Ю.И. Возраст углеводородных скоплений в связи с проблемой поиска нефтяных и газовых месторождений // Мат-лы Шестой межд. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн. 1. М.: ГЕОС, 2002. С. 253-255

9. Кабышев Б.П., Кабышев Ю.Б. Флюидодинамика: фактор созидания или разрушения и переформирования месторождений углеводородов // Мат-лы Шестой межд. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн. 1. М.: ГЕОС, 2002. С. 191-193

10. Чистякова Н.Ф. Термобарические аномалии как отражение формирования углеводородного сырья (на примере Западно-Сибирского нефтегазоносного бассейна) // Геология нефти и газа. 2001. №3. С. 42-49

11. Конищев В. С, Ковтуна А.М. Нефтеносность и геодинамика Припятского палеорифта // Мат-лы Шестой межд. конф. "Новые идеи в гeoлогии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн. 1. М.: ГЕОС, 2002. С. 239-242

12. Чебаненко ИИ., Клочко В.П., Токовенко В.С., Евдощук НИ. Осадочно-неорганическая теория формирования нефтяных и газовых месторождений // Геология нефти и газа. 2000. №5. С. 50-52

13. Гордадзе Г. Н., Арефьев О.А. Некоторые существенные несоответствия состава органического вещества нефтематеринских толщ с нефтями // Мат-лы Шестой межд. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн. 1. М.: ГЕОС, 2002. С. 135

14. Гордадзе Г. Н., Русинова Г. В. Углеводороды-биомаркеры в продуктах мягкого термолиза асф~льтенов и смол // Мат-лы Шестой ме~д. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". М.: ГЕОС, 2002. С. 137

15. Прасолов Э.М и др. Изотопный состав углерода и кислорода карбонатов в районах распространения подводных грязевых вулканов (Черное море) // Дегазация Земли: геодинамика, геофлюиды, нефть и газ. М.: ГЕОС, 2002. С. 225-226

16. Прасолов Э.М и др. Изотопный состав углерода и кислорода природных карбонатных труб в районах подводной разгрузки флюидов (Кадисский залив, Атлантический океан) // Дегазация Земли: геодинамика, геофлюиды, нефть и газ. М.: ГЕОС, 2002. С. 226-228

17. Родкина М. В. О погрешности методики определения вклада мантийной компоненты в составе природных УВ газов // Мат-лы Шестой межд. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн. 2. М.: ГЕОС, 2002. С. 1 30- 1 34

18. Краюшкин В.А. Небиотическая нефтегазоносность недр // Тезисы докл. межд. конф. "Генезис нефти и газа и формирование их месторождений в Украине как научная основа прогноза и поисков новых скоплений". Чернигов. 2001. С. 16-17

19. Кулакова И.И., Руденко А.П. Фракционирование изотопов углерода в его круговороте на Земле // Дегазация Земли: геодинамика, геофлюиды, нефть и газ. М.: ГЕОС, 2002. С. 170-172

20. Кучер М.И. Эволюция изотопного состава углерода в процессах дегазации и дифференциации мантии // Дегазация Земли: геодинамика, геофлюиды, нефть и газ. М.: ГЕОС, 2002. С. 175-176

21. Кривошея В.А. Минеральный синтез углеводородов – ведущая концепция развития нефтегазовой геологии // Тезисы докл. межд. конф. "Генезис нефти и газа и формирование их месторождений в Украине как научная основа прогноза и поисков новых скоплений". Чернигов. 2001. С. 31-33

22. Дюнин В.И, Корзун А.В. Геологическая модель формирования глубоких вод и происхождение месторождений углеводородов // Тр. 5 межд. конф. "Новые идеи в науках о Земле™. М. 2001. С. 223

23. Дюнин В.И., Корзун А.В. Флюидодинамика и формирование месторождений углеводородов. Сырьевая база России в XXI веке // Мат-лы научно-практической конф. Архангельск. 2001. С. 55-58

24. Нивин В.А., Ижорский С.В. Изотопы гелия как индикаторы источников и степени дегазации мантии при формировании палеозойских щелочных и карбонатных комплексов Кольской провинции // Дегазация Земли: геодинамика, геофлюиды, нефть и газ. М.: ГЕОС, 2002. С. 204-206

25. Гончаров В.С., Ежиков А.Д, Ильченко В.П. О сохранности углеводородов в недрах // Мат-лы Шестой межд. конф. "Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр". Кн.1. М.: ГЕОС, 2000. С. 133-134

26. Гончаров В.С., Есиков А.Д, Ильченко В.П. Особенности распределения изотопного состава углерода природных газов. в месторождениях севера Западной Сибири // Дегазация Земли: геодинамика, геофлюиды, нефть и газ. М.: ГЕОС, 2002. С. 303-306

27. Дюнин В.И., Корзун А.В. Движение флюидов: происхождение нефти и формирование месторождений углеводородов М.: Научный мир, 2003. 97 с

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Больше
10 года 1 мес. назад #6771 от Геннадий Тарасенко

Евгений ТИЩЕНКО пишет:
Жалоба направлена администрации Форума с приложением IP-адресов!

Нам обоим замечания были, на я не писал пасквиль на вас... это точно...
В докторантуру в 55 поступать поздно, я и так бы защитился, но Казахстан не оплачивает защиту и не признает чужие диссертации, мне за докторскую Российскую доплачивать не будут... Мне за кандидатскую не платили до тех пор, пока я не прошел настрификацию, получил 2 диплом казахстанский... А научность определяется просмотром тем, смотрят, значит это ценно.... Ну я говорю про научные темы, а не парнуху.... Так что пора вводить новые законы в науке и привлекать к этому интернет на высоком уровне... Келейность создавать в различных областях науки приводит к ее застою, примеры сами можете привести.... ВАК надо убрать-это точно :!: :idea:
тема моя на нефтянке-не дают слово сказать
ВАКовцы хотят выйти в инет, но там нет единства как у них, и это им не нравится, они не закрывают, но делают премодерацию или еще хуже вообще не публикуют мои посты... Многие журналы в России мне отказываю молча , без объяснений , мои статьи. Так в журнал "геология нефти и газа" я подаю свои статьи с 1987 года, меня ни разу до сих пор не опубликовали... Так что же мне выходит в советские времена защититься было не возможно... Но такое положение привело к массовым защитам-кандидатские и докторские покупали вместе с ВАКом или ученым советом... В дружбе народов универе защищались воры в законе :!: А как сейчас появляется этот мусор научный в монографиях.... Нет уж, лучше пусть инет выбирает-он не обманет....
Вложения:

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Больше
10 года 1 мес. назад #6810 от Геннадий Тарасенко

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Больше
10 года 1 мес. назад #6811 от Андрей Булатов
Песок, море, солнце - как здорово!

Мы новый мир построим

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Больше
10 года 1 мес. назад - 10 года 1 мес. назад #6812 от Геннадий Тарасенко















Это практика геологическая на Каспии...
Последнее редактирование: 10 года 1 мес. назад пользователем Геннадий Тарасенко.

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Больше
10 года 1 мес. назад #6813 от Геннадий Тарасенко
deepoil.ru/index.php/forum новый форум академиков-геологов...

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Время создания страницы: 0.369 секунд
Работает на Kunena форум